RERA Introductory Webinar in just 2 hours

 *Are you FREE on Sunday*

The Real Estate (Regulation and Development) Act, commonly known as RERA, is a landmark legislation in India aimed at regulating the real estate sector and protecting the interests of homebuyers. It mandates transparency, accountability, and efficiency in the real estate industry.

For civil engineers, understanding RERA is crucial as it ensures compliance with quality standards, timely delivery of projects, and promotes professionalism in the construction sector. Participating in RERA introductory webinars can provide valuable insights and knowledge, empowering civil engineers to excel in their field and contribute to the development of a transparent and accountable real estate ecosystem. Join us in unraveling the intricacies of RERA and shaping the future of real estate in India!

RERA Introductory Webinar

Duration: 2 Hr

Date: 12th May 2024, Sunday

Time:  7pm to 9pm


Fees: Rs. 99/-

Content:

- RERA in Brief

- RERA Certification Exam

- 1 Month RERA Course Content


Training Medium:

Marathi (50%) + Hindi (25%) + English (25%)

Benefits:

- Recording of Webinar for Lifetime

- RERA Guideline PDF

- Offer for attendees only for 10 min, those want in-depth Knowledge


Expert: Mr. Prakash Bhat, Pune.

RERA Certified Real Estate Agent, Lead ISO Auditor with 35+ Years Real Estate Construction Experience

After Making Payment Download CEiiT App to get Further Details.

- GST Receipt will be shared please provide your Firm Name & GST Number in App Chat Box

- Webinar Joining Link will be shared on App chats Section, 10 Min Before.


Confirm Your Seat Payment Link:

https://ceiit.courses.store/497006?utm_source%3Dother%26utm_medium%3Dtutor-course-referral%26utm_campaign%3Dcourse-overview-webapp

Contact for more details 9112078534


Regards

Pravin Mundhe 

CEiiT CSRDF Pune 

Empowering Construction Sector Since 2015

How to Measure Density? what is mean by density?

 The density of a material is a measure of how much mass is contained within a given volume of the material. It is typically expressed in units such as kilograms per cubic meter (kg/m³) or grams per cubic centimetre (g/cm³). Density is an important physical property that helps characterize and identify materials, as well as predict their behaviour under different conditions.

How to Measure Density:

1. Direct Measurement:

  • Water Displacement Method: This method involves immersing the material in a container of water and measuring the change in water level. The volume of water displaced equals the volume of the material. Divide the mass of the material by its volume to obtain density.
  • Geometric Measurement: For regular-shaped objects, such as cubes or cylinders, measure their dimensions (length, width, height) and calculate their volume using the appropriate geometric formula. Then, divide the mass of the object by its volume to determine density.

2. Indirect Measurement:

  • Archimedes' Principle: Submerge the material in a liquid of known density (typically water) and measure the buoyant force acting on it. This force is equal to the weight of the displaced liquid and can be used to calculate the volume of the material. Divide the mass of the material by its volume to determine density.
  • Pycnometer Method: This involves placing the material in a pycnometer (a specific type of volumetric flask) filled with a liquid of known density, such as water or a suitable solvent. After sealing the pycnometer, measure its total mass. The difference in mass before and after adding the material allows for calculation of the volume occupied by the material, thus determining its density.

3. Instrumental Methods:

  • Density Meters: These are specialized instruments that measure the density of materials directly, often utilizing principles such as oscillation, buoyancy, or refractive index.
  • Gas Pycnometers: Gas displacement pycnometers measure the volume of a material by filling a chamber with an inert gas and comparing the pressure before and after the sample is introduced. Combined with the sample's mass, this allows for density calculation.

Importance of Density Measurement:

Density measurement is crucial in various fields such as manufacturing, construction, materials science, and engineering. It helps in:

  • Quality control of materials.
  • Design and production of components and structures.
  • Determination of material properties and behavior.
  • Identifying materials and substances.
  • Calculating mass and volume in various applications.

In summary, density is a fundamental property of materials, and measuring it accurately is essential for understanding and utilizing materials effectively across different industries and applications.

Shore D hardness test. Founder -Albert Ferdinand Shore

 The Shore D hardness test is a widely used method for determining the hardness of materials, particularly polymers and elastomers. It's named after its inventor, Albert Ferdinand Shore. This test provides a quantitative measure of the resistance of a material to indentation, which is an important property for materials used in various applications, including manufacturing, engineering, and product development.

### Principle of Shore D Hardness Test:

The Shore D hardness test measures the resistance of a material to penetration by a specific indenter under a defined force. The test is conducted using a device called a durometer, which consists of a gauge with a spring-loaded indenter. The durometer applies a standard force to the indenter, which is then pressed into the material surface for a specified period. The depth of penetration of the indenter into the material is measured, and this measurement is used to determine the Shore D hardness value of the material.


### Procedure:

1. **Preparation of Sample:** The material sample should be flat and uniform in thickness. The surface should be free from any defects or irregularities that could affect the test results.

2. **Calibration:** Before conducting the test, the durometer is calibrated to ensure accurate measurements. Calibration ensures that the durometer is applying the correct force and that the measurements are consistent and reliable.

3. **Application of Load:** The durometer is positioned perpendicular to the surface of the material, and a standard force is applied to the indenter. The force is typically between 12.5N to 50N, depending on the material being tested.

4. **Measurement:** The depth of penetration of the indenter into the material is measured using a scale on the durometer. This measurement corresponds to the Shore D hardness value of the material. The higher the hardness value, the greater the resistance of the material to indentation.


### Advantages:

1. **Quick and Easy:** The Shore D hardness test can be performed quickly and easily, providing results in a matter of seconds.

2. **Non-destructive:** The test is non-destructive, meaning it does not damage the material being tested. This makes it suitable for quality control purposes, where the tested materials need to be used afterward.

3. **Portable:** Durometers are portable and can be used in various settings, including manufacturing facilities, laboratories, and field environments.

4. *Cost-effective:** Shore D hardness testing is relatively inexpensive compared to other hardness testing methods, making it accessible for a wide range of applications.


### Limitations:

1. **Surface Sensitivity:** The test results may be influenced by the surface finish of the material, with rougher surfaces yielding different hardness values than smoother surfaces.

2. **Material Thickness:** The thickness of the material can affect the test results, especially for thin samples where substrate effects may be significant.

3. **Material Anisotropy:** Anisotropic materials may exhibit different hardness values in different directions, complicating the interpretation of test results.

4. **Limited Application:** Shore D hardness testing is primarily suitable for soft to moderately hard materials, such as polymers and elastomers. It may not be suitable for harder materials like metals.


### Applications:

1. **Quality Control:** Shore D hardness testing is commonly used in industries such as rubber manufacturing, plastic fabrication, and automotive to ensure consistent material hardness and quality.

2. **Product Development:** It helps in selecting appropriate materials for specific applications based on their hardness properties.

3. **Research and Development:** Shore D hardness testing is used in research and development to study the effects of different formulations, processing conditions, and additives on material hardness.


In conclusion, the Shore D hardness test is a valuable tool for assessing the hardness of polymers and elastomers, offering simplicity, speed, and cost-effectiveness for various industrial applications.